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Abstract
The exploration of computer vision applications for fabric defect detection has immense potential value. However,
current relevant research in this area has primarily focused on detection models that aim for high detection accuracy
and algorithmic efficiency, while neglecting the practical industrial production requirements. Therefore, we propose
a fabric defect detection and post-processing system that integrates an optimized region with convolutional neural
network (CNN) features (i.e., Faster R-CNN) for defect detection, defect localization and detection model evaluation.
In addition, the proposed intelligent system incorporates novel approaches, such as a rearranged fabric dataset,
anomaly detection, recommended clipping region division, and a replenishment device. This study illustrates an
example of artificial intelligence (AI)-driven automated technology in fabric manufacturing. The accuracy and
detection speed of different detection models under identical hardware conditions are evaluated and compared
with related work. Experimental results demonstrate that the proposed approach achieves comparable performance
to other models, while significantly reducing computational resource requirements. The potential efficiency of using
two-stage networks on hardware systems for fabric defect detection tasks is highlighted, which is likely to have
relevant implications for the textile industry.
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1 Introduction
With the rapid development of society and economy, the
demand for high-quality garments is increasing. As a re-
sult, fabric defect detection has become a critical step in
production. However, in industrial manufacturing, the de-
tection of many different small and weak target defects re-
mains a challenge.

Moreover, fabrics with too many defects can only be sold
at 45% ∼ 65% of their normal price [1, 2]. If serious prob-
lems are not detected at the factory stage, the entire batch
of products will be rendered unusable, which is detrimen-

*Correspondence: dancai1985@guet.edu.cn; xzm@guet.edu.cn
1School of Materials Science and Engineering, Guangxi Key Laboratory of
Information, Guilin University of Electronic Technology, Guilin, China
2School of Mathematics and Computing Science, Guangxi Colleges and
Universities Key Laboratory of Data Analysis and Computation, Guilin
University of Electronic Technology, Center for Applied Mathematics of
Guangxi (GUET), Guilin, China
Full list of author information is available at the end of the article

tal to textile enterprises. Therefore, the implementation of
an efficient, reliable, and integrated intelligent vision sys-
tem for the textile industry can result in significant eco-
nomic benefits. Today, the textile industry requires a more
specific set of criteria for fabric defect detection, such as a
more comprehensive scoring system beyond counting the
number of defects or recognizing their type, and a more
reasonable post-processing strategy based on different de-
fect distribution patterns. Many researchers have made
consistent efforts to address these issues and have pro-
posed excellent detection approaches [3–9].

However, the implementation of automatic intelligent
control in textile enterprises still faces several problems.
First, training a detection model is difficult because there
are many different fabric defects but few available sam-
ples, which can ultimately lead to higher detection errors.
Second, the post-processing strategies for defect detection
need to be improved, as enterprises are concerned with
how to effectively handle and categorize the detected de-
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fective fabrics to maximize their residual value. Finally, the
lack of mature and comprehensive examples of real-world
deployments makes it difficult for enterprises to determine
the feasibility and cost of intelligently transforming their
production lines.

Our contributions are summarized as follows.
1) We propose a fabric defect detection system that inte-

grates an optimized region with convolutional neural net-
work (CNN) features (i.e., Faster R-CNN) to improve the
detection accuracy.

2) We design a comprehensive scoring mechanism based
on the type, area, and direction of fabric defects, and
present a defective fabric post-processing scheme based
on orbital conveyor transfer and stencil replenishment.

3) We develop an anomaly detection mechanism based
on defect continuity evaluation. If the detection system de-
tects a large area of continuous defects, or if the detection
value exceeds the alarm threshold, a stop command is sent
to the production line control system, and an audible visual
alarm is triggered.

4) We propose an algorithm for automatically recom-
mending a clipping region division scheme, which effec-
tively addresses the current reliance on manual segmenta-
tion for the reuse of defective fabric.

5) We have built a low-cost, real-time vision system for
fabric defect detection and post-processing, and devel-
oped the supporting industrial software.

2 Related work
2.1 Research progress in fabric defect detection
In 2016, Hanbay et al. [10] provided a detailed overview of
fabric defects and proposed seven methods to detect them.
Traditional machine vision methods [11–13] and the emis-
sion spectra and statistical methods have been used to
identify defective areas and count defects prior to cutting
the fabric. However, these methods have difficulty detect-
ing random changes in fabric surface texture and are easily
affected by lighting conditions, resulting in low accuracy in
industrial environments.

In recent years, the development of graphics processing
units (GPUs) has led to significant advances in fabric de-
fect detection based on deep learning techniques. For in-
stance, YOLO [14], Faster R-CNN [15], and other models
and algorithms have not only achieved better performance
but also have the ability to identify defect types and their
spatial locations compared to traditional machine vision
methods. However, deep learning algorithms require pow-
erful GPUs, which increases the difficulty and cost of their
deployment in practical industrial applications.

To balance costs and benefits, researchers have to re-
consider the use of low-cost and rapid computer vision
technology in practical industrial applications. Khodier et
al. [16] used a combination of CNNs to detect defects in
jacquard fabrics with complex patterns and achieved an

Figure 1 Illustration of the proposed fabric defect detection scheme

accuracy of approximately 99%. Wang et al. [17] proposed
a double-branch parallel Faster R-CNN model for multi-
category defect detection in practical applications, which
could handle a variety of fabric defects and achieved a
mean of average precision (mAP) of 0.574 (mAP@50).

2.2 Challenges and opportunities
Although there have been significant advances in fabric
defect detection, traditional machine vision methods are
still widely used in the textile industry [18–20]. Manufac-
turers are increasingly demanding fabric defect detection
systems that not only count the number of defects but
also evaluate and process defective fabrics, which can be
used to guide improvements in the manufacturing process.
These requirements pose new challenges for vision tech-
nology, while offering new opportunities for the develop-
ment of intelligent manufacturing.

To address these challenges, we design a comprehensive
evaluation standard based on defect type, area, and direc-
tion, as shown in Fig. 1, and propose an algorithm that
can automatically recommend region divisions for clip-
ping and grading the defective fabric. This standard is also
used for anomaly detection. All these functions are ad-
justed to meet the real needs of enterprises and have been
successfully deployed in hardware modules.

3 Detection model
We report three design improvements based on the classic
Faster R-CNN [21].

1) Multi-source datasets. We primarily use open-source
datasets, including the smart diagnosis of cloth flaw dataset
from Tianchi [22, 23] (main dataset), the fabric defect
dataset from Kaggle [24, 25] (fine-tuned dataset A) and
the additional images of fabric with defects acquired in
this work (fine-tuned dataset B). Based on the cluster anal-
ysis results of defect size and cause, the original 30 cate-
gories are merged into 14 categories to simplify the detec-
tion process, which is also a common practice in related
work [15, 17].

2) Double-stream training (DST). To detect small tar-
gets more efficiently, ResNet50 [26] is used in the backbone
neural network instead of VGG-16. Unlike the scheme
proposed by Wang et al. [17], both the mainstream and
substream network of the Faster R-CNN are trained on the
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main and fine-tuned datasets, respectively, to compute a
mixed score to effectively balance the detection effects of
large and small defects. CiouLoss [27] is used to replace
L1Loss to improve the detection efficiency of defects with
different aspect ratios. In addition, NMS [28] is employed
to efficiently remove highly overlapping predicted boxes
with relatively inaccurate calibrations, 16-bit floating point
(FP16) [29] is utilized to reduce GPU memory consump-
tion, and online hard example mining (OHEM) [30] is ap-
plied to improve the model’s ability to learn from difficult
cases. Various loss functions are attempted to enhance the
performance of the detection model.

3) Deep learning application of model output. The out-
puts of the detection model, such as the type, bounding
box (bbox) position, and the confidence level, are utilized
for further processing. Using the bbox position, the area
and direction of each defect are first calculated and in-
corporated into the proposed scoring mechanism. Then,
based on this scoring mechanism, anomaly detection and
clipping region division are proposed and implemented.
These algorithms and the hardware components are inte-
grated into the proposed system.

The workflow of the proposed fabric defect detection is
shown in Fig. 2. The main dataset contains many pairs of
images. In each pair, there are fabrics with the same pat-
tern design. In one image, the fabric has defects, while in
the other image, the fabric has no defects. We first use

the mainstream network of the Faster R-CNN to train our
model, and then use the substream network of the Faster
R-CNN to train the model with small defects in the fine-
tuned dataset. Finally, the rating results of the two mod-
els are mixed, and the defect type with the highest confi-
dence value is returned. In addition, Fig. 3(a) displays the
number of defects contained in the dataset and Fig. 3(b)
shows the comparison between the two datasets, the main
dataset and the fine-tuned dataset.

4 Fabric defect scoring mechanism
From a technical perspective, training an artificial intel-
ligent (AI) application model is only one step in the en-
gineering process. Enterprises are not usually concerned
with the type of detection models (Faster R-CNN, Cascade
R-CNN or YOLO) used. In contrast, they are more con-
cerned with having a feasible and cost-effective solution
that includes hardware, software, and detection methods.

The training of a fabric defect detection model is con-
sidered a pre-task for system deployment. Applying the
model with the industrial camera and the optimal use of
the information returned by the detection models are areas
that need to be explored. After all, the lack of accuracy of
single shot detection can be compensated for by multiple
shots. This shows that efficient and reasonable processing
schemes are more important than high single shot detec-
tion accuracy in real industrial production. Therefore, this

Figure 2 The workflow of the proposed fabric defect detection method and the rearranged fabric dataset in this work. For the main dataset, we
integrate multiple fabric defect datasets [22, 23] into a new dataset. The fine-tuned dataset A consists of short lines and holes from the Kaggle’s
fabric dataset [24, 25]. The fine-tuned dataset B consists of contaminations and short watermarks collected in this work. The CoCo stands for
common objects in context. It is a dataset format that includes annotated images with object segmentation masks, bounding boxes, and labels. The
VGG16 stands for visual geometry group 16-layer, the Faster R-CNN is the faster region-based convolutional neural network, and the ResNet is the
residual network
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Figure 3 Details of our dataset. Conta: contaminations; Misp: misprints; Water: watermarks; Flora: floral_hairs; SHs: seam_heads; SHPs:
seam_head_prints; Bug: bug_stick; Hos: holes; Fos: folds; WDs: weaving_defects; Omis: omissions; WaxS: wax_spots; Color: color_differences; Mesh:
mesh_folding

work proposes a scoring mechanism that provides crite-
ria for post-processing, which is introduced in subsequent
sections.

In actual production, enterprises do not always discard
or recycle a defective piece of fabric. It is more economi-
cal to adopt different strategies depending on the specific
situation of the defect distribution. Therefore, we have de-
signed a comprehensive scoring criterion to evaluate the
type, area, and direction (transverse or longitudinal) of
fabric defects. This criterion is used as the basis for fur-
ther processing of the defective fabric.

The total score of the fabric defects is denoted as PTot

and calculated as follows:

PTot =
n∑

1

Pi

=
n∑

1

(αPi,typ + βPi,are + γ Pi,tra

+ δPi,lon), (1)

where n represents the total number of detected defects,
Pi denotes the score of the i-th detected defect, while Pi,typ,
Pi,are, Pi,tra, and Pi,lon are the scores in terms of type, area,
transverse and longitudinal trend, respectively. α, β , γ and
δ are the weight coefficients, whose values are negatively
related to the acceptance of the corresponding defect char-
acteristics and can be adjusted by the analytical hierarchy
process or neural network according to different customer
needs.

4.1 Single defect scoring
The coordinates returned by the detection model for po-
sitioning the bbox are (x1, y1), (x2, y2), as shown in Fig. 4.

Figure 4 An example of scoring fabric defects based on bounding
box (bbox) location. The coordinates returned by the detection model
for positioning the bbox are (x1, y1), (x2, y2). f and g indicate the
resolution ratio of current image. Nx and Ny represent the transverse
and longitudinal lengths, respectively. We use the bbox position to
calculate the area and direction of each defect, and use the data to
help us evaluate the defect. Three bounding boxes in the figure
represent three defects in the fabric. For the first bounding box’s
position, H = (251, 412), F = (273, 385); for the second bounding box’s
position, L = (400, 400), J = (422, 367); for the third bounding box’s
position, P = (246, 282), N = (392, 40). In addition, A = (0, 0), B = (640,
0), C = (640, 480), D = (0, 480)

The output of the i-th detected defect is recorded as a vec-
tor (Di):

Di =
[
typei, x1,i, y1,i, x2,i, y2,i

]
, (2)
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which is used to calculate the width �xi and length �yi of
the defect as follows:

{
�xi = |x2,i – x1,i|,
�yi = |y2,i – y1,i|.

(3)

The transverse trend score Pi,tra and longitudinal trend
score Pi,lon of the defect can be obtained by normalizing its
width and length. The industrial camera used in the pro-
posed system has a direct output resolution ratio of 640
× 480, but the fabric does not occupy the entire industrial
camera’s field of view. Thus, the direct resolution ratio is
calculated using Eq. (4):

{
Pi,tra = �xi/Nx,
Pi,lon = �yi/Ny,

(4)

where Nx and Ny represent the transverse and longitudi-
nal lengths, respectively. In addition, the score Pi,are of the
defective area can be calculated using Eq. (5):

Pi,are =
�xi · �yi

Nx · Ny
= Pi,tra · Pi,lon. (5)

4.2 Video frame scoring
As shown in Fig. 4, the scores of all defects, including the
three marked defects (1, 2, 3) in the current frame, are cal-
culated by Eq. (1).

However, this calculation is limited to individual frames
of the video stream. In actual production, the area of the
fabric exceeds the field of view of the industrial camera,
requiring adaptation algorithms. Therefore, we propose a
real-time scoring algorithm to calculate the total score PTot

for the entire fabric.

4.3 Real-time fabric scoring mechanism
Our algorithm is based on frame-by-frame detection and
scoring thresholds in ideal cases. However, practical indus-
trial applications require a real-time detection system that
can process successive frames of camera video, as the fab-
ric on the conveyor belt moves in a direction relative to
the industrial camera. In addition, the consistency of de-
fect detection is limited to the detection model.

To solve these problems, we develop a mechanism us-
ing defect numbering and dictionary traversal. Defects are
individually numbered and combined with other informa-
tion to create a dictionary. Using this algorithm, the dic-
tionary of defects between two adjacent frames is com-
pared in real time to determine the duplication and loss
of detected defects. Furthermore, the real-time scoring al-
gorithm is combined with defect scoring and start/stop
judgments to form a scoring mechanism. An example of
this real-time scoring algorithm is shown in Fig. 5. By cou-
pling this scoring mechanism with the hardware system

Figure 5 Example of a real-time defect detection scoring algorithm.
The green border indicates that this defect was not detected in the
previous frame. n is the index of the video frame being processed

described in the following sections, defective fabrics are
evaluated more accurately.

4.4 Anomaly detection
On the production line, an abnormal condition of a knit-
ting machine can cause major defects in the fabric. If left
undetected, it can cause significant losses to the enterprise.
To address this issue, we develop a more efficient scoring
algorithm and an anomaly detection method based on the
defect scoring density and the mechanisms introduced in
the previous section. First, after defect scoring, the defec-
tive area is evaluated; in particular, the total score PTot

k (k
represents the k-th fabric) and the corresponding defect
score density ρk (also shown in Fig. 6) are calculated for
each frame. When the following conditions are satisfied, a
shutdown command is sent to the control system.

1) The defect score density exceeds the preset threshold
2) Any length, width, or area of a single defect exceeds

its preset thresholds.
If the shutdown condition is not triggered after the time-

out, the loop waits for the next detection area.

4.5 Clipping region division
The distribution of defects in different parts of a long
piece of fabric on the production line can vary. To ad-
dress this issue, inspired by previous work [31–33], we de-
sign algorithms that recommend the division of clipping
regions and evaluate the quality of each part, which can
help enterprises maximize the economic value of the fab-
ric. The experiment demonstrated the algorithms using
only full-color red, yellow, and green fabrics, considering
both point-like defects, such as contaminations, and line-
like defects, such as watermarks, which are simpler and
easier to detect with greater accuracy (Fig. 6).

When the industrial personal computer (IPC) provides
the source instruction for defect processing, the system di-
vides the fabric based on whether defects are present. Re-
gions with defects are marked with yellow borders, while
regions without defects are marked with blue borders. The
previously mentioned scoring mechanism is used to pro-
vide ratings for the areas with defects. The irregular cut-
ting of fabric is a non-deterministic polynomial (NP)-hard
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Figure 6 Recommended clipping range and quality rating. The D
area indicates that a fabric defect has been found. The orange square
represents the recommended clipping region, and the red square
represents the clipping regions that are not recommended. A, B and C
represent high quality segments, good segments, and defective fabric
segments, respectively. We design an indicator called “Basis” to
evaluate each clipping region, the Scuttable area is the pixel square of
the clippable area, and the Sthis D area is the pixel square of the D area.
ρk represents the defect score density of the k-th fabric, PTot

k
represents the total score of the k-th fabric. Nx and Ny represent the
transverse and longitudinal lengths, respectively. k represents the k-th
fabric

problem [31]; it is more practical and faster to cut and di-
vide the fabric into rectangles in actual production. There-
fore, the division of regions is simplified by solving the
maximum rectangular area problem. We use orange bor-
ders to indicate recommended clipping regions and red
borders to indicate non-recommended clipping regions.

Next, the system evaluates each clipping region of the
fabric using different thresholds, where A, B, and C repre-
sent high quality segments, good segments, and defective
fabric segments, respectively. Then, the partition informa-
tion of the current fabric and the partition screenshot are
logged for further classification processing.

4.6 Stencil identification and replenishment
To ensure efficient and continuous fabric production, de-
fective fabrics must be quickly replaced with the defect-
free fabrics in the same stencil to avoid disrupting the
stacking sequence [33]. This section describes the stencil
identification and replenishment device, which includes
a stencil replenishment station, a steering device, deflec-
tors of the stencil replenishment station, a replenishment
conveyor, and controllers capable of identifying stencil
of fabrics as they move. For fast fabric pattern recog-
nition, current methods use simple classification tasks

Figure 7 Schematic diagram of stencil identification and
replenishment device. n indicates the number of stencils

through neural network training [34], or pattern recogni-
tion through RGB histogram-based approaches [35]. The
latter approach is used in this work, because providing ad-
ditional models after fabric detection models will hinder
the detection efficiency and speed of the system. An op-
eration diagram of the stencil identification and replenish-
ment device is shown in Fig. 7. Based on this approach, the
corresponding execution logic in this paper is designed as
follows.

1) When the defect score exceeds the set threshold, the
IPC takes a screenshot of the camera video stream, com-
pares its RGB channel histogram with the pre-stored pat-
tern, calculates, and returns the ID of the pattern with the
highest similarity.

2) The hardware system then releases the defect-free
fabrics with the specified stencil in order as compensation,
according to the identified pattern of the detected fabric.

5 Structure and hardware
Existing research on fabric defect detection has focused
mainly on software implementation. Although some stud-
ies have proposed a semi-manual system [18], there has
been limited exploration of hardware-based fabric defect
detection and post-processing systems [36]. In industrial
applications, models, software and hardware are equally
important. Therefore, a fabric defect detection and post-
processing system will be designed and applied in practice.

Fig. 8 shows the overall rendering effect of the system, a
physical image of the system in the main view, a schematic
diagram, and close-up photographs of the hardware mod-
ule, and a close-up photograph of the fabric replenishment
module and the user interface of the IPC program.

The electrical components and modules of the proposed
system are shown in Fig. 9 and Table 1. It consists of eight
major components: IPC, main processing, expansion and
display, drive execution, power, alarm, fabric replenish-
ment, and vision modules.

1) The IPC module, which is used to run the fabric de-
fect detection model, the IPC program, and to communi-
cate with the hardware system, consists of a Lenovo Le-
gion R9000P personal laptop with an R7-5800H CPU and
an NVIDIA GeForce RTX 3060 Laptop (6 GB) GPU.

2) The main processing module, which is responsible
for organizing all the components of the hardware system,
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Figure 8 Overall structure of our fabric defect detection and post-processing system. (a) Structural schematic diagram; (b) Real-time image of the
system in the main view; (c) User interface of the industrial personal computer program; (d) Close-up photo of the fabric replenishment module; (e)
Close-up photo of the hardware module; (f ) Schematic diagram of the hardware module. The TFT is the thin-film transistor, the MCU is the
micro-controller unit (the Node MCU is an ESP8266 based development board), the Arduino UNO is a product of Arduino. TB6600 is a commonly
used stepper motor driver, which is used to control the movement of stepper motors

Figure 9 Electrical devices and modules of the fabric defect detection and post-processing system. The IPC is the industrial personal computer
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Table 1 Electrical devices and modules in the proposed system. “DIY” means that the device is self-developed

Module Device Model Amount

IPC module Lenovo Legion R9000P R7-5800H, RTX 3060 6 GB laptop 1
Main processing module Development board Arduino UNO R3 (ATmega328P) 2

Extended board CNC Shield V3 1

Extension and display module Development board Node MCU V3 WIFI (ESP8266) 1
1.8-inch TFT screen ST7735 1

Drive execution module Stepper motor 42BYGH47 2
Small conveyor belt DIY 2
Motor driver for stepper motor TB6600 3
Motor driver for sliding platform A4988 3
Light-sensitive sensor LM393 1

Power module Switching power supply MW S-150-24 (150 W 24 V) 1
MW S-100-12 (100 W 12 V) 1
MW S-50-5 (50 W 5 V) 1

Alarm module Alarm light LTE-5061 1
Relay FL-3FF-S-Z 5 V DC 1

Fabric replenishment module Servo control board PCA9685 1
Servo motor MG90 3

Vision module Industrial camera HW500 (640×480) 1
3D sliding platform DIY 1

consists of two Arduino UNOs and a CNC Shield extended
board.

3) The extension and display module, consisting of a
Node MCU V3 WIFI board with ESP8266 and a 1.8-inch
TFT screen of model ST7735, is used for human-machine
interaction and communication extension.

4) The drive execution module contains two stepper mo-
tors of model 42BYGH47, two small conveyor belts we
built ourselves, three motor drivers for the stepper motor
of model TB6600, three motor drivers for the sliding plat-
form of model A4988 and a light-sensitive sensor of model
LM393. This module is used to receive control commands
from the main processing module and drive the motors.

5) The power module provides different voltage require-
ments, using three power supply units: MW S-150-24
(150 W 24 V), MW S-100-12 (100 W 12 V), and MW S-
50-5 (50 W 5 V).

6) The alarm module consists of an LTE-5061 alarm light
and an FL-3FF-S-Z 5 V DC relay, providing hardware sup-
port for anomaly detection algorithms.

7) The fabric replenishment module consists of a
PCA9685 servo controller board and three MG90 servo
motors (which can be rotated from 90 degrees to 180 de-
grees). This module provides hardware support for stencil
identification and replenishment for the post-processing
session.

8) The vision module includes a HW500 industrial cam-
era (5 million pixels, 30 frames per second, 640 × 480 di-
rect output resolution ratio) and a self-developed 3D slid-
ing platform. The industrial camera can capture moving
images and centralize them via the controller and IPC.

6 Experiments and discussion
6.1 Experimental configuration
The rearranged fabric dataset used in this study is divided
into main and fine-tuned datasets. Each part is further di-
vided into training, verification, and test sets in the ratio
of 6:2:2. The fine-tuned Faster R-CNN is used for training.
The details of the training methods can be found in the
introduction for detection models, and the training envi-
ronment is as follows: Python 3.7.6, PyTorch 1.11.0+cu115,
CuDNN 8.3.2, TorchVision 0.12.0+cu115, OpenCV 4.5.2,
MMCV 1.4.8, and MMDetection 2.23.0.

The detection and post-processing system is deployed
on a personal laptop with an R7-5800H CPU and an
NVIDIA GeForce RTX 3060 Laptop (6 GB) GPU. With the
CPU-assisted computation enabled, the system processes
five frames per second of real-time detection video. More-
over, a monitoring software is developed using QT5 and
connected to the hardware system via a serial port. The
user interface of this software includes various functions,
such as industrial camera video stream output, defect de-
tection video stream output and industrial camera RGB
adjustment, as shown in Fig. 8(c).

6.2 Model evaluation
6.2.1 Performance comparison
The improved model is validated on a rearranged dataset
and evaluated using the mean average precision (mAP).
The proposed model achieves promising performance,
especially in reducing the GPU memory cost (during
model training) and improving the small target detec-
tion accuracy, as shown in Table 2. Compared to those of
the baseline, the values of mAP@0.5:0.95, mAP@0.5, and
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Table 2 Ablation experiment of the proposed method. mAP@0.5:0.95, mAP@0.5, mAP@0.75, mAP_s@0.5:0.95, mAP_m@0.5:0.95, and
mAP_l@0.5:0.95 represent the mAP values at different thresholds. For example, mAP@0.5:0.95 represents the average mAP value
calculated at intersection over union (IoU) thresholds ranging from 0.5 to 0.95, with a step size of 0.05. mAP_s@0.5:0.95,
mAP_m@0.5:0.95, and mAP_l@0.5:0.95 refer to small, medium, and large objects, respectively. The best results are marked in bold

Method mAP@0.5:0.95 mAP@0.5 mAP@0.75 mAP_s@0.5:0.95 mAP_m@0.5:0.95 mAP_l@0.5:0.95 Memory cost(GB)

R50-FPN+L1Loss (our baseline) 0.404 0.616 0.472 0.101 0.557 0.485 4.66
R50-FPN+GiouLoss [37] 0.398 0.603 0.466 0.107 0.529 0.487 4.67
R50-FPN+CiouLoss [27] 0.428 0.633 0.510 0.128 0.576 0.520 4.67
R50-FPN+L1Loss+NMS [28] 0.422 0.627 0.490 0.100 0.561 0.509 4.67
R50-FPN+FP16+NMS+L1Loss 0.424 0.630 0.503 0.102 0.559 0.523 3.29
R50-FPN+FP16+NMS+GiouLoss 0.422 0.634 0.496 0.082 0.558 0.506 3.29
R50-FPN+FP16+NMS+CiouLoss 0.432 0.635 0.498 0.096 0.575 0.530 2.98
R50-FPN+FP16+NMS+
CiouLoss+OHEM [30]

0.434 0.639 0.507 0.131 0.580 0.522 3.30

R50-FPN+FP16+NMS+
CiouLoss+OHEM+DST

0.458 0.636 0.489 0.192 0.591 0.531 3.30

Table 3 Performance comparison of different algorithms and models. “-” indicates that the data are not provided or that this metric is
not used. The best results are marked in bold

Method mAP@0.5:0.95 mAP@0.5 FPS_1 Memory cost(GB) Multi-stage FPS_2 FPS_3

Yolov3_mobilenetv2_416 [38] 0.239 – 14.70 5.30 No 23.80 24.10
Yolox_tiny [39] 0.320 – 8.70 3.50 No 15.40 15.90
Yolov3_d53 [40] 0.338 – 16.20 3.80 No 33.10 34.30
Retinanet_r50_fpn [41] 0.374 – 5.40 3.80 No 8.90 9.40
Faster R-CNN [17] – 0.531 – 4.67 Yes – –
Improved Faster R-CNN [17] – 0.574 – – Yes – –
Faster R-CNN+L1loss 0.404 0.616 4.70 4.00 Yes 9.10 10.50
FabricNet [15] – 0.620 – – Yes – –
Faster R-CNN+Fine-tuned (ours) 0.458 0.636 4.90 4.67 Yes 9.30 10.20

mAP_s@0.5:0.95 increase by 5.4%, 2%, and 9.1%, respec-
tively.

As shown in Table 2, replacing L1Loss of the baseline
with CiouLoss increases the mAP@0.5:0.95 by 2.4%. With
NMS and FP16, the mAP@0.5:0.95 value improves by 2%
compared to that of the baseline, and the GPU mem-
ory cost decreases by 1.37 GB, reducing the GPU work-
load. Compared to the optimized models with NMS and
FP16, using OHEM and replacing L1Loss with CiouLoss
increases the mAP@0.5:0.95 value by 1%. Using the DST as
a training strategy and following the optimization methods
above, the mAP@0.5:0.95 score improves by 2.4% com-
pared to not using this method. Overall, the mAP@0.5:0.95
score increases by 5.4% compared to the baseline.

6.2.2 Ablation experiment
The performance of the proposed model is significantly
enhanced when the FP16 + NMS + CiouLoss + OHEM
+ DST method is used simultaneously, as demonstrated
in Table 3. In addition to evaluating the performance of
the model on the dataset, we also include a live test ses-
sion to determine the real-time frame rate for detection on
the proposed system, including FPS_1, FPS_2 and FPS_3.
FPS_1 refers to the frames per second (FPS) in the user in-
terface of the IPC program when both the VSOIC and the

VSODD modules are used. FPS_2 refers to the FPS when
VSOIC is enabled but VSODD is disabled. FPS_2 refers to
the FPS when both VSOIC and VSODD are disabled.

Compared to the studies of Wang et al. [17] and Zhou et
al. [15], the network and the strategy proposed in this work
achieve better mAP values on the dataset. However, it is
not possible to compare their detection speeds on the sys-
tem proposed in this work because the model of the above
work is not open source. In addition, two-stage networks
such as the Faster R-CNN cannot compete with networks
such as YOLO and Retinanet in terms of detection speed,
real-time frame rate, and GPU memory cost (during de-
ployment). In particular, some decision algorithms of the
detection system are executed directly at the output of the
model. Although this slows down the detection speed of
the models, we still consider the introduction of the met-
ric “FPS” (used in the proposed system, including FPS_1,
FPS_2, and FPS_3) in the model performance comparison
phase to be significant and in line with the original intent
of our work.

6.3 Function demonstration
According to the degree of defects, the fabric to be de-
tected is divided into defect-free fabric, defective fabric,
and fabric with large-area defects, and the corresponding
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post-processing process is designed for three situations,
as shown in Fig. 10. In addition, the optimization of the
scheduling and the time consumption of each process are
implemented, so that the system is more stable, and the op-
eration logic is self-consistent. The time consumption and
scheduling of the functional demonstrations are shown in
Fig. 11.

6.3.1 Anomaly detection
When a piece of fabric that exceeds the defect score alarm
threshold is fed to the bottom conveyor, the IPC success-
fully sends an alarm command to the alarm light via the de-
velopment board, causing all conveyors to shut down and
display a warning tip in the user interface. When the op-
erator clicks the “module disable” button on the large-area
defect automatic shutdown module in the user interface,
the module can be reset, and the entire system can resume
its operation. Fig. 12(a) shows the operation and results of
the system. As a result, this anomaly detection module can
effectively solve the problem of large defects caused by ab-

normal conditions of a knitting machine by using vision
technology-based automatic shutdown.

6.3.2 Defect detection and post-processing
The experimental results for defective fabrics with differ-
ent stencils are shown in Fig. 12(b) and Fig. 12(c). During
the defective fabric detection experiment, the user inter-
face returns the current fabric score, and the system enters
the defective fabric processing stage. At the same time, a
release command is sent to the fabric replenishment mod-
ule, and the pattern number and information are displayed
on the user interface. The replenishment module replen-
ishes the defect-free fabric recycle station with defect-free
fabric in same stencil. Meanwhile, the defective fabric re-
cycle conveyor transfers the defective fabric itself to the
defective fabric replenishment station.

The results of a defect-free fabric delivery experiment
are shown in Fig. 12(d). The user interface displays the cur-
rent fabric defect score without activating the defect pro-
cessing module, and the fabric continues to pass through

Figure 10 Flowchart of the proposed system for processing defect-free fabric, defective fabric, and fabric with large area defects

Figure 11 Time consumption and scheduling of each process in the functional demonstration of the hardware system
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Figure 12 Fabric image, defect identification, evaluation and processing on (a) shows the test of anomaly detection. There is no stencil
identification, and the score is 265. (b) shows the test of the defective fabric for stencil 1. The result of the stencil identification is stencil 1 with a score
of 150. (c) displays the test of the defective fabric for stencil 4. The result of the stencil identification is stencil 4 with a score of 125. (d) displays the
test of defect-free fabric. There is no stencil identification, and the score is 10

the conveyor as normal. The fabric replenishment mod-
ule does not receive an “enable” command. As a result, this
system is shown to be capable of detecting and processing
defective full-color fabrics.

6.3.3 Multi-form information feedback
The system also provides a review function for fabrics with
detected defects, which enables the output of detection re-
sults in the form of video streams, screenshots, GIFs, and
logs. In addition, clipping region division experiments and
defective fabric grading experiments are performed on the
defective fabrics tested in the above experiments.

7 Conclusion and future work
Due to complex scenarios and high market demands that
drive continuous research efforts, fabric defect detection
and post-processing offer promising computer vision ap-
plications. We propose a fabric defect detection and post-
processing system that integrates an optimized Faster R-
CNN model for defect detection, defect localization and
detection model evaluation. In addition, the system in-
corporates new approaches, such as a rearranged fabric
dataset, anomaly detection, recommended clipping region
division, and a replenishment device. Meeting the require-
ments of practical industrial production can be more valu-
able than incremental improvement, so computer vision
and automation technology have been combined here, to
bridge scientific research and industrial production.

However, resolving the conflict between detecting small
defects and large receptive fields is still a challenging task.
The efficiency of real-time detection needs to be improved,
since 5 ∼ 10 frames per second is not enough for fabric
manufacturing. In addition, the feedback of the results
provided by the proposed system to the machine opera-
tors also needs to be improved. In future research, we will
explore potential solutions for companies to address the
above issues, improve the optimization of the system’s op-
erational logic and scheduling scheme, and develop new

features such as defect tagging (which uses additional
hardware modules to provide feedback at the physical level
by attaching tags to defects). To encourage further re-
search in this area, our approach is available as open source
on GitHub at https://github.com/linhuaizhou/yida_gedc_
fabric4show.

Abbreviations
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